ฟังก์ชันขั้นบันได
ฟังก์ชันขั้นบันได หมายถึง ฟังก์ชันที่มีโดเมนเป็นสับเซตของจำนวนจริง และมีค่าของฟังก์ชันเป็นค่าคงตัวเป็นช่วงๆ มากกว่าสองช่วง กราฟของฟังก์ชันนี้มีลักษณะคล้ายขั้นบันได
ตัวอย่างของฟังก์ชันขั้นบันไดที่พบเห็นในชีวิตประจำวัน ได้แก่ อัตราค่าบริการไปรษณียภัณฑ์ประเภทต่างๆ เช่น จดหมาย พัสดุไปรษณีย์ เป็นต้น อ่านเพิ่มเติม
วันเสาร์ที่ 10 มกราคม พ.ศ. 2558
ฟังก์ชันค่าสัมบูรณ์
ฟังก์ชันค่าสัมบูรณ์
ฟังก์ชันค่าสมบูรณ์ถูกกำหนดโดยกฎซึ่งแบ่งออกเป็นสองกรณี
ค่าฟังก์ชันสมบูรณ์ | | จะกำหนดโดย
ค่า absolute ของ x ให้ระยะห่างระหว่าง x และ 0 เป็นบวกหรือศูนย์เสมอ อ่านเพิ่มเติม
ฟังก์ชันค่าสัมบูรณ์
ฟังก์ชันค่าสมบูรณ์ถูกกำหนดโดยกฎซึ่งแบ่งออกเป็นสองกรณี
ค่าฟังก์ชันสมบูรณ์ | | จะกำหนดโดย
ค่า absolute ของ x ให้ระยะห่างระหว่าง x และ 0 เป็นบวกหรือศูนย์เสมอ อ่านเพิ่มเติม
ฟังก์ชันเอกซ์โพเนนเชียล (Exponential function)
ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร อ่านเพิ่มเติม
ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร อ่านเพิ่มเติม
ฟังก์ชันกำลังสอง
ฟังก์ชันกำลังสอง (Quadratic function)
ฟังก์ชันกำลังสองเป็นฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a, b, c เป็นจำนวนจริงใด ๆ และ a ¹ 0 ซึ่งกราฟของฟังก์ชันกำลังสอง เรียกว่า พาราโบลา
1) y = 2x2 + 3x – 10 เมื่อ a = 2 , b = 3 และ c = -1
2) y = x2 + 1 เมื่อ a = 1 , b = 0 และ c = 1
3) y = -x2 + 2x + 1 เมื่อ a = -1 , b = 2 และ c = 1 อ่านเพิ่มเติม
ฟังก์ชันกำลังสอง (Quadratic function)
ฟังก์ชันกำลังสองเป็นฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a, b, c เป็นจำนวนจริงใด ๆ และ a ¹ 0 ซึ่งกราฟของฟังก์ชันกำลังสอง เรียกว่า พาราโบลา
1) y = 2x2 + 3x – 10 เมื่อ a = 2 , b = 3 และ c = -1
2) y = x2 + 1 เมื่อ a = 1 , b = 0 และ c = 1
3) y = -x2 + 2x + 1 เมื่อ a = -1 , b = 2 และ c = 1 อ่านเพิ่มเติม
ฟังก์ชัน
ความหมายของฟังก์ชัน จากความรู้เรื่องความสัมพันธ์ที่เรียนมาแล้ว พิจารณาความสัมพันธ์ต่อไปนี้
1. กำหนดให้
r1 = { (0,1), (1,2), (2,3), (1,1), (0,4) }
r2 = { (0,3), (1,1), (2,1), (3,4) }
ถ้าต้องการแสดงว่าสมาชิกใดของโดเมนมีความสัมพันธ์กับสมาชิกใดของเรนจ์อาจจะใช้วิธี
เขียนลูกศรโยงเรียกว่าการจับคู่ เช่นจากความสัมพันธ์ r1 และ r2เขียนแผนภาพแสดงการจับคู่ได้ดังนี้ อ่านเพิ่มเติม
1. กำหนดให้
r1 = { (0,1), (1,2), (2,3), (1,1), (0,4) }
r2 = { (0,3), (1,1), (2,1), (3,4) }
ถ้าต้องการแสดงว่าสมาชิกใดของโดเมนมีความสัมพันธ์กับสมาชิกใดของเรนจ์อาจจะใช้วิธี
เขียนลูกศรโยงเรียกว่าการจับคู่ เช่นจากความสัมพันธ์ r1 และ r2เขียนแผนภาพแสดงการจับคู่ได้ดังนี้ อ่านเพิ่มเติม
โดเมนและเรนจ์
ถ้าพิจารณาเฉพาะเซตของสมาชิกตัวหน้า และเซตของสมาชิกตัวหลังในคู่อันดับของความสัมพันธ์ใด ๆ จะได้โดเมน (domain) และเรนจ์ (range) ของความสัมพันธ์นั้นตามลำดับ
เช่น r1 = {(1,2),(2,3),(3,4),(4,5)}
r2={(x,y) I x I | y = x}
เซตของสมาชิกตัวหน้าในคู่อันดับของ r1 = {1,2,3,4} เรียกเซตนี้ว่า โดเมนของ r1
เซตของสมาชิกตัวหลังในคู่อันดับของ r1 = {2,3,4,5} เรียกเซตนี้ว่า เรนจ์ของ r1
ส่วนใน r2 จะเห็นว่าโดเมนของ r2 เท่ากับเรนจ์ของ r2 คือเซตของจำนวนเต็ม อ่านเพิ่มเติม
ถ้าพิจารณาเฉพาะเซตของสมาชิกตัวหน้า และเซตของสมาชิกตัวหลังในคู่อันดับของความสัมพันธ์ใด ๆ จะได้โดเมน (domain) และเรนจ์ (range) ของความสัมพันธ์นั้นตามลำดับ
เช่น r1 = {(1,2),(2,3),(3,4),(4,5)}
r2={(x,y) I x I | y = x}
เซตของสมาชิกตัวหน้าในคู่อันดับของ r1 = {1,2,3,4} เรียกเซตนี้ว่า โดเมนของ r1
เซตของสมาชิกตัวหลังในคู่อันดับของ r1 = {2,3,4,5} เรียกเซตนี้ว่า เรนจ์ของ r1
ส่วนใน r2 จะเห็นว่าโดเมนของ r2 เท่ากับเรนจ์ของ r2 คือเซตของจำนวนเต็ม อ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)